Self-avoiding flexible polymers under spherical confinement.
نویسندگان
چکیده
We compute the free energy of confinement for a flexible self-avoiding polymer inside a spherical cavity. Accurate numerical results allow us to arbitrate between three competing scaling predictions. For moderate confinement, the free energy exhibits a power-law dependence on cavity size that is different from what is observed for planar and cylindrical confinement. At high monomer concentrations, crossover to a different scaling regime is observed, consistent with the screening of the excluded-volume interactions. We demonstrate how our findings lead to a revised prediction for the escape time of a polymer from a spherical confinement.
منابع مشابه
Confined space and effective interactions of multiple self-avoiding chains.
We study the link between three seeming-disparate cases of self-avoiding polymers: strongly overlapping multiple chains in dilute solution, chains under spherical confinement, and the onset of semidilute solutions. Our main result is that the free energy for overlapping n chains is independent of chain length and scales as n9/4, slowly crossing over to n3, as n increases. For strongly confined ...
متن کاملTranslocation of polymers out of confined geometries
We consider the free energy of confinement for a flexible self-avoiding polymer inside a spherical cavity. Accurate numerical calculations allow us to arbitrate between competing scaling predictions. We find that, for moderate confinement, the free energy exhibits a power-law dependence on cavity size that is different from what is observed for planar and cylindrical confinement. At high monome...
متن کاملConfinement-driven translocation of a flexible polymer.
We consider the escape of a flexible, self-avoiding polymer chain out of a confined geometry. By means of simulations, we demonstrate that the translocation time can be described by a simple scaling law that exhibits a nonlinear dependence on the degree of polymerization and that is sensitive to the nature of the confining geometry. These results contradict earlier predictions but are in agreem...
متن کاملConfinement free energy of flexible polyelectrolytes in spherical cavities.
A weakly charged flexible polyelectrolyte chain in a neutral spherical cavity is analyzed by using self-consistent field theory within an explicit solvent model. Assuming the radial symmetry for the system, it is found that the confinement of the chain leads to creation of a charge density wave along with the development of a potential difference across the center of cavity and the surface. We ...
متن کاملRouse modes of self-avoiding flexible polymers.
Using a lattice-based Monte Carlo code for simulating self-avoiding flexible polymers in three dimensions in the absence of explicit hydrodynamics, we study their Rouse modes. For self-avoiding polymers, the Rouse modes are not expected to be statistically independent; nevertheless, we demonstrate that numerically these modes maintain a high degree of statistical independence. Based on high-pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 6 5 شماره
صفحات -
تاریخ انتشار 2006